Special Issue: “Advances in Our Understanding of ALK-Related Cancers: A Selection of Papers from the Joint Annual Meeting of the European Research Initiative for ALK-Related Malignancies (ERIA) and the European Union Marie Curie European Training Network ALKATRAS”

Special Issue Editors:

Dr. Suzanne Turner, Prof. Dr. Lukas Kenner, Dr. Olaf Merkel

15 PhD students have been selected for the ALKATRAS programme

Learn about them here:


ALKATRAS kick-off

The European Research Initiative on ALK-related malignancies (ERIA) met in Cambridge to kick-off of the ALKATRAS international training network funded by the European Union within Horizon2020. This successful consortium will train the next generation of researchers with comprehensive expertise to support their career development.

ALKATRAS shortlisted for funding by EU

The European Research Initiative of ALK-related malignancies (ERIA) forms the core of a successful proposal for a European Training Network (ETN) entitled ALKATRAS. The consortium developed a competitive training programme for fifteen PhD students, which is complemented by an array of companies. With a score of 95.4 ALKATRAS made it into the top 6 % out of more than 1,300 proposals to obtain an invitation for funding. The training programme will be launched in spring 2016 and recruitment will be announced soon.

The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis

Authors: Stephen Ducray, Karthikraj Natarajan, Dr. Gavin Garland, Dr. Suzanne Turner and Gerda Egger

Anaplastic lymphoma kinase (ALK) is a tyrosine kinase involved in neuronal and gut development. Initially discovered in T cell lymphoma, ALK is frequently affected in diverse cancers by oncogenic translocations. These translocations involve different fusion partners that facilitate multimerisation and autophosphorylation of ALK, resulting in a constitutively active tyrosine kinase with oncogenic potential. ALK fusion proteins are involved in diverse cellular signalling pathways, such as Ras/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Janus protein tyrosine kinase (JAK)/STAT. Furthermore, ALK is implicated in epigenetic regulation, including DNA methylation and miRNA expression, and an interaction with nuclear proteins has been described. Through these mechanisms, ALK fusion proteins enable a transcriptional programme that drives the pathogenesis of a range of ALK-related malignancies.

Current Immunotherapeutic Approaches in T Cell Non-Hodgkin Lymphomas

Authors: Teresa Poggio, Justus Duyster and Dr. Anna Illert

T cell non-Hodgkin lymphoma (T-NHL) is a rare and heterogeneous group of neoplasms of the lymphoid system. With the exception of a few relatively indolent entities, T-NHL is typically aggressive, treatment resistant, and associated with poor prognosis. Relatively few options with proven clinical benefit are available for patients with relapsed or refractory disease. Immunotherapy has emerged as a promising treatment for the management of patients with hematological malignancies. The identification of tumor antigens has provided a large number of potential targets. Therefore, several monoclonal antibodies (alemtuzumab, SGN-30, brentuximab vedotin, and mogamulizumab), directed against tumor antigens, have been investigated in different subtypes of T-NHL. In addition to targeting antigens involved in cancer cell physiology, antibodies can stimulate immune effector functions or counteract immunosuppressive mechanisms. Chimeric antigen receptor (CAR)-T cells directed against CD30 and immune checkpoint inhibitors are currently being investigated in clinical trials. In this review, we summarize the currently available clinical evidence for immunotherapy in T-NHL, focusing on the results of clinical trials using first generation monoclonal antibodies, new immunotherapeutic agents, immune checkpoint inhibitors, and CAR-T cell therapies.

Immune Response against ALK in Children with ALK-Positive Anaplastic Large Cell Lymphoma

Authors: Serena Stadler, Vijay Kumar Singh, Fabian Knörr, Christine Damm-Welk and Professor Wilhelm Woessmann

Patients with anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL) mount a humoral and cellular immune response against ALK. More than 90% of children and adolescents with ALK-positive ALCL have detectable anti-ALK antibodies in serum or plasma, and the antibody titer inversely correlates with the risk of relapse. ALK-specific CD8 and CD4 T cell responses have been described in patients with ALK-positive ALCL. Vaccination with ALK DNA led to protection against lymphoma growth in a murine model. Collectively, these data suggest that the ALK-specific immune response is involved in the control of the disease. The characteristics of the humoral and cellular immune response against ALK as well as tumor immune escape mechanisms have been increasingly investigated. However, tumor and host factors contributing to the individual immune response against ALK are still largely unknown. Depending on the individual strength of the immune response and its determinants, individualized immunological approaches might be appropriate for the consolidation of ALCL patients. Strategies such as ALK vaccination could be effective for those with a pre-existing anti-tumor immunity, while an allogeneic blood stem cell transplantation or check-point inhibition could be effective for others.

ALK in Neuroblastoma: Biological and Therapeutic Implications

Authors: Dr. Ricky Trigg and Dr. Suzanne Turner

Neuroblastoma (NB) is the most common and deadly solid tumour in children. Despite the development of new treatment options for high-risk NB, over half of patients relapse and five-year survival remains at 40–50%. Therefore, novel treatment strategies aimed at providing long-term disease remission are urgently sought. ALK, encoding the anaplastic lymphoma kinase receptor, is altered by gain-of-function point mutations in around 14% of high-risk NB and represents an ideal therapeutic target given its low or absent expression in healthy tissue postnatally. Small-molecule inhibitors of Anaplastic Lymphoma Kinase (ALK) approved in ALK fusion-positive lung cancer are currently undergoing clinical assessment in patients with ALK-mutant NB. Parallel pre-clinical studies are demonstrating the efficacy of ALK inhibitors against common ALK variants in NB; however, a complex picture of therapeutic resistance is emerging. It is anticipated that long-term use of these compounds will require combinatorial targeting of pathways downstream of ALK, functionally-related ‘bypass’ mechanisms and concomitant oncogenic pathways.

The Pathological Spectrum of Systemic Anaplastic Large Cell Lymphoma (ALCL)

Authors: Ivonne A. Montes-Mojarro, Dr. Julia Steinhilber, Irina Bonzheim, Professor Leticia Quintanilla-Fend and Falko Fend

Anaplastic large cell lymphoma (ALCL) represents a group of malignant T-cell lymphoproliferations that share morphological and immunophenotypical features, namely strong CD30 expression and variable loss of T-cell markers, but differ in clinical presentation and prognosis. The recognition of anaplastic lymphoma kinase (ALK) fusion proteins as a result of chromosomal translocations or inversions was the starting point for the distinction of different subgroups of ALCL. According to their distinct clinical settings and molecular findings, the 2016 revised World Health Organization (WHO) classification recognizes four different entities: systemic ALK-positive ALCL (ALK+ ALCL), systemic ALK-negative ALCL (ALK− ALCL), primary cutaneous ALCL (pC-ALCL), and breast implant-associated ALCL (BI-ALCL), the latter included as a provisional entity. ALK is rearranged in approximately 80% of systemic ALCL cases with one of its partner genes, most commonly NPM1, and is associated with favorable prognosis, whereas systemic ALK− ALCL shows heterogeneous clinical, phenotypical, and genetic features, underlining the different oncogenesis between these two entities. Recognition of the pathological spectrum of ALCL is crucial to understand its pathogenesis and its boundaries with other entities. In this review, we will focus on the morphological, immunophenotypical, and molecular features of systemic ALK+ and ALK− ALCL. In addition, BI-ALCL will be discussed.

Treatment Options for Paediatric Anaplastic Large Cell Lymphoma (ALCL): Current Standard and beyond

Authors: Nina Prokoph, Hugo Larose, Megan S. Lim, G.A. Amos Burke and Dr. Suzanne Turner

Anaplastic Lymphoma Kinase (ALK)-positive Anaplastic Large Cell Lymphoma (ALCL), remains one of the most curable cancers in the paediatric setting; multi-agent chemotherapy cures approximately 65–90% of patients. Over the last two decades, major efforts have focused on improving the survival rate by intensification of combination chemotherapy regimens and employing stem cell transplantation for chemotherapy-resistant patients. More recently, several new and ‘renewed’ agents have offered the opportunity for a change in the paradigm for the management of both chemo-sensitive and chemo-resistant forms of ALCL. The development of ALK inhibitors following the identification of the EML4-ALK fusion gene in Non-Small Cell Lung Cancer (NSCLC) has opened new possibilities for ALK-positive ALCL. The uniform expression of CD30 on the cell surface of ALCL has given the opportunity for anti-CD30 antibody therapy. The re-evaluation of vinblastine, which has shown remarkable activity as a single agent even in the face of relapsed disease, has led to the consideration of a revised approach to frontline therapy. The advent of immune therapies such as checkpoint inhibition has provided another option for the treatment of ALCL. In fact, the number of potential new agents now presents a real challenge to the clinical community that must prioritise those thought to offer the most promise for the future. In this review, we will focus on the current status of paediatric ALCL therapy, explore how new and ‘renewed’ agents are re-shaping the therapeutic landscape for ALCL, and identify the strategies being employed in the next generation of clinical trials.

The Role of Activator Protein-1 (AP-1) Family Members in CD30-Positive Lymphomas

Authors: Ines Garces de los Fayos Alonso, Huan-Chang Liang, Dr. Suzanne Turner, Dr. Sabine Lagger, Olaf Merkel and Lukas Kenner

The Activator Protein-1 (AP-1) transcription factor (TF) family, composed of a variety of members including c-JUN, c-FOS and ATF, is involved in mediating many biological processes such as proliferation, differentiation and cell death. Since their discovery, the role of AP-1 TFs in cancer development has been extensively analysed. Multiple in vitro and in vivo studies have highlighted the complexity of these TFs, mainly due to their cell-type specific homo- or hetero-dimerization resulting in diverse transcriptional response profiles. However, as a result of the increasing knowledge of the role of AP-1 TFs in disease, these TFs are being recognized as promising therapeutic targets for various malignancies. In this review, we focus on the impact of deregulated expression of AP-1 TFs in CD30-positive lymphomas including Classical Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma.

The Role of Oncogenic Tyrosine Kinase NPM-ALK in Genomic Instability

Authors: Cosimo Lobello, Vasilis Bikos, Dr. Andrea Janikova and Sarka Pospisilova

Genomic stability is crucial for cell life and transmitting genetic material is one of the primary tasks of the cell. The cell needs to be able to recognize any possible error and quickly repair it, and thus, cells have developed several mechanisms to detect DNA damage and promote repair during evolution. The DNA damage response (DDR) and DNA repair pathways ensure the control of possible errors that could impair the duplication of genetic information and introduce variants in the DNA. Endogenous and exogenous factors compromise genomic stability and cause dysregulation in the DDR and DNA repair pathways. Cancer cells often impair these mechanisms to overcome cellular barriers (cellular senescence and/or apoptosis), leading to malignancy. NPM (nucleophosmin)-ALK (anaplastic lymphoma kinase) is an oncogenic tyrosine kinase that is involved in the development of anaplastic large cell lymphoma (ALCL). NPM-ALK is known to be involved in the activation of proliferative and anti-apoptotic signaling pathways. New evidence reveals that NPM-ALK translocation also impairs the ability of cells to maintain the genomic stability through both DDR and DNA repair pathways. This review aims to highlight the role of the oncogenic tyrosine kinase NPM-ALK in the cell, and pointing to new possible therapeutic strategies.

Tumor Resistance against ALK Targeted Therapy-Where It Comes From and Where It Goes

Authors: Geeta Geeta Sharma, Ines Mota, Dr. Luca Mologni, Carlo Gambacorti-Passerini and Roberto Chiarle

Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged malignancies, particularly in non-small-cell lung cancer (NSCLC), which has generated considerable interest and effort in developing ALK tyrosine kinase inhibitors (TKI). Crizotinib was the first ALK inhibitor to receive FDA approval for ALK-positive NSCLC patients treatment. However, the clinical benefit observed in targeting ALK in NSCLC is almost universally limited by the emergence of drug resistance with a median of occurrence of approximately 10 months after the initiation of therapy. Thus, to overcome crizotinib resistance, second/third-generation ALK inhibitors have been developed and received, or are close to receiving, FDA approval. However, even when treated with these new inhibitors tumors became resistant, both in vitro and in clinical settings. The elucidation of the diverse mechanisms through which resistance to ALK TKI emerges, has informed the design of novel therapeutic strategies to improve patients disease outcome. This review summarizes the currently available knowledge regarding ALK physiologic function/structure and neoplastic transforming role, as well as an update on ALK inhibitors and resistance mechanisms along with possible therapeutic strategies that may overcome the development of resistance.